Мощный импульсный блок питания

Принцип работы импульсных блоков питания. Схема импульсного блока питания

Мощный импульсный блок питания

10 очаровательных звездных детей, которые сегодня выглядят совсем иначе Время летит, и однажды маленькие знаменитости становятся взрослыми личностями, которых уже не узнать. Миловидные мальчишки и девчонки превращаются в с.

Мощный импульсный блок питания

Неожиданно: мужья хотят, чтобы их жены делали чаще эти 17 вещей Если вы хотите, чтобы ваши отношения стали счастливее, вам стоит почаще делать вещи из этого простого списка.

Мощный импульсный блок питания

Эти 10 мелочей мужчина всегда замечает в женщине Думаете, ваш мужчина ничего не смыслит в женской психологии? Это не так. От взгляда любящего вас партнера не укроется ни единая мелочь. И вот 10 вещей.

Мощный импульсный блок питания

11 странных признаков, указывающих, что вы хороши в постели Вам тоже хочется верить в то, что вы доставляете своему романтическому партнеру удовольствие в постели? По крайней мере, вы не хотите краснеть и извин.

Мощный импульсный блок питания

9 знаменитых женщин, которые влюблялись в женщин Проявление интереса не к противоположному полу не является чем-то необычным. Вы вряд ли сможете удивить или потрясти кого-то, если признаетесь в том.

Мощный импульсный блок питания

Наперекор всем стереотипам: девушка с редким генетическим расстройством покоряет мир моды Эту девушку зовут Мелани Гайдос, и она ворвалась в мир моды стремительно, эпатируя, воодушевляя и разрушая глупые стереотипы.

*****

Как сделать импульсный блок питания своими руками?

Если нет желания устанавливать громоздкий трансформатор или создавать намотку, можно своими руками собрать блок питания импульсного типа, который требует трансформатора всего с несколькими витками.

Мощный импульсный блок питания

При этом, потребуется небольшое количество деталей, а работу можно выполнить за 1 час. В данном случае, основой для блока питания используется микросхема IR2151.

Для работы понадобятся следующие материалы и детали:

  1. PTC термистор любого типа.
  2. Пара конденсаторов. которые выбираются с расчетом 1мкф. на 1 Вт. При создании конструкции подбираем конденсаторы так, чтобы они вытянули 220 Вт.
  3. Диодная сборка типа «вертикалка».
  4. Драйвера типа IR2152, IR2153, IR2153D.
  5. Полевые транзисторы типа IRF740, IRF840. Можно выбрать и другие, если у них хороший показатель сопротивления.
  6. Трансформатор можно взять из старых компьютерных системных блоков.
  7. Диоды. устанавливаемые на выходе, рекомендуется брать из семейства HER.

Кроме этого, понадобятся следующие инструменты:

Также, не стоит забывать и о необходимости хорошего освещения на месте работы.

Пошаговая инструкция

Мощный импульсный блок питания

Мощный импульсный блок питания

Сборка проводится согласно составленной схеме цепи. Микросхема была подобрана согласно особенностям цепи.

Сборка проводится следующим образом:

  1. На входе устанавливаем PTC термистор и диодные мосты.
  2. Затем. устанавливается пара конденсаторов.
  3. Драйвера необходимы для регулирования работы затворов полевых транзисторов. При наличии у драйверов индекс D в конце маркировки устанавливать диод FR107 не нужно.
  4. Полевые транзисторы устанавливаются без закорачивания фланцев. При проведении крепления к радиатору, используют специальные изоляционные прокладки и шайбы.
  5. Трансформаторы устанавливаются с закороченными выводами.
  6. На выходе диоды.

Все элементы устанавливаются в отведенные места на плате и припаиваются с обратной стороны.

Мощный импульсный блок питанияДля того, чтобы правильно собрать блок питания, нужно внимательно отнестись к установке полярных элементов, а также следует быть осторожным при работе с сетевым напряжением. После отключения блока от источника питания, в цепи не должно оставаться опасного напряжения. При правильной сборке, последующая наладка не проводится.

Проверить правильность работы блока питания можно следующим образом:

  1. Включаем в цепь, на выходе лампочка, к примеру,12 Вольт. При первом кратковременном пуске, лампочка должна гореть. Кроме этого, следует обратить внимание на то, что все элементы не должны нагреваться. Если что-то греется, значит, схема собрана неправильно.
  2. При втором пуске замеряем значение тока при помощи тестера. Даем проработать блоку достаточное количество времени для того, чтобы убедиться в отсутствии нагревающихся элементов.

Кроме этого, нелишним будет проверка всех элементов при помощи тестера на наличие высокого тока после выключения питания.

Рекомендации по сборке:

  1. Как ранее было отмечено. работа импульсного блока питания основана на обратной связи. Рассматриваемая схема не требует специальной организации обратной связи и различных фильтров по питанию.
  2. Особое внимание следует уделить выбору полевых транзисторов. В данном случае, рекомендуются полевые транзисторы IR, которые славятся устойчивостью к тепловому разрешению. Согласно данным производителя, они могут стабильно работать до 150 градусов Цельсия. Однако, в этой схеме они не сильно нагреваются, что можно назвать весьма важной особенностью.
  3. Если нагрев транзисторов происходит постоянно. следует устанавливать активное охлаждение. Как правило, оно представлено вентилятором.

Достоинства и недостатки

Мощный импульсный блок питания

Импульсный преобразователь имеет следующие достоинства:

  1. Высокий показатель коэффициента стабилизации позволяет обеспечить условия питания, которые не будут вредить чувствительной электронике.
  2. Рассматриваемые конструкции обладают высоким показателем КПД. Современные варианты исполнения имеют этот показатель на уровне 98%. Это связано с тем, что потери снижены до минимума, о чем говорит малый нагрев блока.
  3. Большой диапазон входного напряжения – одно из качеств, из-за которого распространилась подобная конструкция. При этом, КПД не зависит от входных показателей тока. Именно невосприимчивость к показателю напряжения тока позволяет продлить срок службы электроники, так как в отечественной сети электроснабжения прыжки показателя напряжения частое явление.
  4. Частота входящего тока оказывает влияние на работу только входных элементов конструкции.
  5. Малые габариты и вес. также обуславливают популярность из-за распространения портативного и переносного оборудования. Ведь при использовании линейного блока вес и габариты увеличиваются в несколько раз.
  6. Организация дистанционного управления.
  7. Меньшая стоимость.
  1. Наличие импульсных помех.
  2. Необходимость включения в цепь компенсаторов коэффициента мощности.
  3. Сложность самостоятельного регулирования.
  4. Меньшая надежность из-за усложнения цепи.
  5. Тяжелые последствия при выходе одного или нескольких элементов цепи.

При самостоятельном создании подобной конструкции, следует учитывать то, что допущенные ошибки могут привести к выходу из строя электропотребителя. Поэтому нужно предусмотреть наличие защиты в системе.

Устройство и особенности работы

При рассмотрении особенностей работы импульсного блока, можно отметить следующие:

  1. Сначала происходит выпрямление входного напряжения.
  2. Выпрямленное напряжение в зависимости от предназначения и особенностей всей конструкции, перенаправляется в виде прямоугольного импульса высокой частоты и подается на установленный трансформатор или фильтр, работающий с низкими частотами.
  3. Трансформаторы имеют небольшие размеры и вес при использовании импульсного блока по причине того, что повышение частоты позволяет повысить эффективность их работы, а также уменьшить толщину сердечника. Кроме этого, при изготовлении сердечника может использоваться ферромагнитный материал. При низкой частоте, можно использовать только электротехническую сталь.
  4. Стабилизация напряжения происходит при помощи отрицательной обратной связи. Благодаря использованию данного метода, напряжение, подаваемое к потребителю, остается неизменным, несмотря на колебание входящего напряжения, и создаваемой нагрузки.

Обратная связь может быть организована следующим образом:

  1. При гальванической развязке. используется оптрон или выход обмотки трансформатора.
  2. Если не нужно создавать развязку. используется резисторный делитель напряжения.

Подобными способами выдерживается выходное напряжение с нужными параметрами.

Стандартные блоки импульсного питания, который может использоваться, к примеру, для регулирования выходного напряжения при питании светодиодной лампы, состоит из следующих элементов:

  1. Часть входная, высоковольтная. Она, как правило, представлена генератором импульсов. Ширина импульса — основной показатель, оказывающий влияние на выходной ток: чем шире показатель, тем больше напряжение, и наоборот. Импульсный трансформатор стоит на разделе входной и выходной части, проводит выделение импульса.
  2. На выходной части стоит PTC термистор. Он изготавливается из полупроводника, имеет положительный показатель коэффициента температуры. Данная особенность означает, что при повышении температуры элемента выше определенного значения, значительно поднимается показатель сопротивления. Используется в качестве защитного механизма ключа.
  3. Низковольтная часть. С низковольтной обмотки проводится снятие импульса, выпрямление происходит при помощи диода, а конденсатор выступает в качестве фильтрующего элемента. Диодная сборка может провести выпрямление тока до значения 10А. Следует учитывать, что конденсаторы могут быть рассчитаны на различную нагрузку. Конденсатор проводит снятие оставшихся пиков импульса.
  4. Драйвера проводят гашение возникающего сопротивления в цепи питания. Драйвера во время работы проводят поочередное открытие затворов установленных транзисторов. Работа происходит с определенной частотой
  5. Полевые транзисторы выбирают с учетом показателей сопротивления и максимального напряжения при открытом состоянии. При минимальном значении, сопротивления значительно повышается КПД и уменьшается нагрев во время работы.
  6. Трансформатор типовой для понижения.

С учетом выбранной схемы, можно приступать к созданию блока питания рассматриваемого типа.

  • Мощный импульсный блок питания

Назначение и принцип работы преобразователя частоты для асинхронных двигателей

  • Мощный импульсный блок питания

    Как самостоятельно подключить выключатель с одной клавишей?

  • Мощный импульсный блок питания

    Назначение и подключение пусковых конденсаторов для электродвигателей

    *****

    Как сделать импульсный блок питания своими руками

    Сфера применения импульсных блоков питания в быту постоянно расширяется. Такие источники применяются для питания всей современной бытовой и компьютерной аппаратуры, для реализации источников бесперебойного электропитания, зарядных устройств для аккумуляторов различного назначения, реализации низковольтных систем освещения и для других нужд.

    В некоторых случаях покупка готового источника питания мало приемлема с экономической или технической точки зрения и сборка импульсного источника собственными руками является оптимальным выходом из такой ситуации. Упрощает такой вариант и широкая доступность современной элементной базы по низким ценам.

    Структурная схема импульсного источника питания

    Наиболее востребованными в быту являются импульсные источники с питанием от стандартной сети переменного тока и мощным низковольтным выходом. Структурная схема такого источника показана на рисунке.

    Мощный импульсный блок питания

    Сетевой выпрямитель СВ преобразует переменное напряжение питающей сети в постоянное и осуществляет сглаживание пульсаций выпрямленного напряжения на выходе. Высокочастотный преобразователь ВЧП осуществляет преобразование выпрямленного напряжения в переменное или однополярное напряжение. имеющее форму прямоугольных импульсов необходимой амплитуды.

    В дальнейшем такое напряжение либо непосредственно, либо после выпрямления (ВН) поступает на сглаживающий фильтр, к выходу которого подключается нагрузка. Управление ВЧП осуществляется системой управления, получающей сигнал обратной связи от выпрямителя нагрузки.

    Такая структура устройства может быть подвергнута критике из-за наличия нескольких звеньев преобразования, что снижает КПД источника. Однако, при верном выборе полупроводниковых элементов и качественном расчете и изготовлении моточных узлов, уровень потерь мощности в схеме мал, что позволяет получать реальные значения КПД выше 90%.

    Принципиальные схемы импульсных блоков питания

    Решения структурных блоков включают не только обоснование выбора вариантов схемной реализации, но и практические рекомендации по выбору основных элементов.

    Сетевой выпрямитель с фильтром

    Для выпрямления сетевого однофазного напряжения используют одну из трех классических схем изображенных на рисунке:

    • однополупериодную;
    • нулевую (двухполупериодную со средней точкой);
    • двхполупериодную мостовую.

    Мощный импульсный блок питания

    Каждой из них присущи достоинства и недостатки, которые определяют область применения.

    Однополупериодная схема отличается простотой реализации и минимальным количеством полупроводниковых компонентов. Основными недостатками такого выпрямителя являются значительная величина пульсации выходного напряжения (в выпрямленном присутствует лишь одна полуволна сетевого напряжения) и малый коэффициент выпрямления.

    Коэффициент выпрямления Кв определяется соотношением среднего значения напряжения на выходе выпрямителя Udк действующему значению фазного сетевого напряжения .

    Для однополупериодной схемы Кв=0.45.

    Для сглаживания пульсации на выходе такого выпрямителя требуются мощные фильтры.

    Нулевая, или двухполупериодная схема со средней точкой. хоть и требует удвоенного числа выпрямительных диодов, однако, этот недостаток в значительной мере компенсируется более низким уровнем пульсаций выпрямленного напряжения и ростом величины коэффициента выпрямления до 0.9.

    Основным недостатком такой схемы для использования в бытовых условиях является необходимость организации средней точки сетевого напряжения, что подразумевает наличие сетевого трансформатора. Его габариты и масса оказываются несовместимыми с идеей малогабаритного самодельного импульсного источника.

    Двухполупериодная мостовая схема выпрямления имеет те же показатели по уровню пульсации и коэффициенту выпрямления, что и нулевая схема,но не требует наличия сетевого трансформатора. Это компенсирует и главный недостаток – удвоенное количество выпрямительных диодов как с точки зрения КПД, так и по стоимости.

    Для сглаживания пульсаций выпрямленного напряжения наилучшим решением является использование емкостного фильтра. Его применение позволяет поднять величину выпрямленного напряжения до амплитудного значения сетевого (при Uф=220В Uфм=314В). Недостатками такого фильтра принято считать большие величины импульсных токов выпрямительных элементов, но критичным этот недостаток не является.

    Выбор диодов выпрямителя осуществляется по величине среднего прямого тока Ia и максимального обратного напряжения UBM .

    Приняв величину коэффициента пульсации выходного напряжения Кп=10%, получим среднее значение выпрямленного напряжения Ud=300В. С учетом мощности нагрузки и КПД ВЧ преобразователя (для расчета принимается 80%, но на практике получится выше, это позволит получить некоторый запас).

    Мощный импульсный блок питания

    Ia – средний ток диода выпрямителя, Рн- мощность нагрузки, η – КПД ВЧ преобразователя.

    Максимальное обратное напряжение выпрямительного элемента не превышает амплитудного значения напряжения сети (314В), что позволяет использовать компоненты с величиной UBM =400В со значительным запасом. Использовать можно как дискретные диоды, так и готовые выпрямительные мосты от различных производителей.

    Для обеспечения заданной (10%) пульсации на выходе выпрямителя емкость конденсаторов фильтра принимается из расчета 1мкФ на 1Вт выходной мощности. Используются электролитические конденсаторы с максимальным напряжением не менее 350В. Емкости фильтров для различных мощностей приведены в таблице.

    Мощный импульсный блок питания

    Высокочастотный преобразователь: его функции и схемы

    Высокочастотный преобразователь представляет собой однотактный или двухтактный ключевой преобразователь (инвертор) с импульсным трансформатором. Варианты схем ВЧ преобразователей приведены на рисунке.

    Мощный импульсный блок питания

    Однотактная схема. При минимальном количестве силовых элементов и простоте реализации имеет несколько недостатков.

    1. Трансформатор в схеме работает по частной петле гистерезиса, что требует увеличения его размеров и габаритной мощности;
    2. Для обеспечения мощности на выходе необходимо получить значительную амплитуду импульсного тока, протекающего через полупроводниковый ключ.

    Схема нашла наибольшее применение в маломощных устройствах, где влияние указанных недостатков не столь значительно.

    Мощный импульсный блок питания Чтобы самостоятельно поменять или установить новый счетчик, не требуется особых навыков. Выбор правильной схемы подключения электросчетчика обеспечит корректный учет потребляемого тока и повысит безопасность домашней электросети.

    В современных условиях обеспечения освещения как внутри помещений, так и на улице все чаще используют датчики движения. Это придает не только комфорт и удобства в наши жилища, но и позволяет существенно экономить. Узнать практические советы по выбору места установки, схем подключения можно здесь.

    Двухтактная схема со средней точкой трансформатора (пушпульная). Получила свое второе название от английского варианта (push-pull) описания работы. Схема свободна от недостатков однотактного варианта, но имеет собственные – усложненная конструкция трансформатора (требуется изготовление идентичных секций первичной обмотки) и повышенные требования к максимальному напряжению ключей. В остальном решение заслуживает внимания и широко применяется в импульсных источниках питания, изготавливаемых своими руками и не только.

    Двухтактная полумостовая схема. По параметрам схема аналогична схеме со средней точкой, но не требует сложной конфигурации обмоток трансформатора. Собственным недостатком схемы является необходимость организации средней точки фильтра выпрямителя, что влечет четырехкратное увеличение количества конденсаторов.

    Благодаря простоте реализации схема наиболее широко используется в импульсных источниках питания мощностью до 3 кВт. При больших мощностях стоимость конденсаторов фильтра становится неприемлемо высокой по сравнению с полупроводниковыми ключами инвертора и наиболее выгодной оказывается мостовая схема.

    Двухтактная мостовая схема. По параметрам аналогична другим двухтактным схемам, но лишена необходимости создания искусственных «средних точек». Платой за это становится удвоенное количество силовых ключей, что выгодно с экономической и технической точек зрения для построения мощных импульсных источников.

    Выбор ключей инвертора осуществляется по амплитуде тока коллектора (стока) IКМАХ и максимальному напряжению коллектор-эмиттер UКЭМАХ. Для расчета используются мощность нагрузки и коэффициент трансформации импульсного трансформатора.

    Однако, прежде необходимо рассчитать сам трансформатор. Импульсный трансформатор выполняется на сердечнике из феррита, пермаллоя или витого в кольцо трансформаторного железа. Для мощностей до единиц кВт вполне подойдут ферритовые сердечники кольцевого или Ш-образного типа. Расчет трансформатора ведется исходя из требуемой мощности и частоты преобразования. Для исключения появления акустического шума частоту преобразования желательно вынести за пределы звукового диапазона (сделать выше 20 кГц).

    При этом необходимо помнить, что при частотах близких к 100 кГц значительно возрастают потери в ферритовых магнитопроводах. Сам расчет трансформатора не составляет труда и легко может быть найден в литературе. Некоторые результаты для различных мощностей источников и магнитопроводов приведены в таблице ниже.

    Расчет произведен для частоты преобразования 50 кГц. Стоит обратить внимание, что при работе на высокой частоте имеет место эффект вытеснения тока к поверхности проводника, что приводит к снижению эффективной площади сечения проводов обмотки. Для предотвращения подобного рода неприятностей и снижения потерь в проводниках необходимо выполнять обмотку из нескольких жил меньшего сечения. При частоте 50 кГц допустимый диаметр провода обмотки не превышает 0.85 мм.

    Параметры импульсных трансформаторов и ключей ВЧ-преобразователя

    Мощный импульсный блок питания

    Зная мощность нагрузки и коэффициент трансформации можно рассчитать ток в первичной обмотке трансформатора и максимальный ток коллектора силового ключа. Напряжение на транзисторе в закрытом состоянии выбирается выше, чем выпрямленное напряжение, поступающее на вход ВЧ-преобразователя с некоторым запасом (UКЭМАХ >=400В). По этим данным производится выбор ключей. В настоящее время наилучшим вариантом является использование силовых транзисторов IGBT или MOSFET.

    Для диодов выпрямителя на вторичной стороне необходимо соблюдать одно правило – их максимальная рабочая частота должна превышать частоту преобразования. В противном случае КПД выходного выпрямителя и преобразователя в целом значительно снизятся.

    Выполнение приведенных рекомендаций дает возможность в кратчайшие сроки и с минимумом проблем и затрат собрать силовую часть высокочастотного импульсного преобразователя для бытовых нужд.

    Видео о изготовлении простейшего импульсного питающего устройства

    *****

    Простой мощный импульсный блок питания для питания радио электро-аппаратуры

    Часто собирая какую нибудь электронную конструкцию,как то, усилитель звуковой частоты,средства автоматики,устройства на базе микроконтроллеров,и многое другое,мы задаемся вопросом а чем питать аппаратуру? Радиоэлектронные устройства в большинстве своем питаются постоянным напряжением отличным от напряжения сети. В последнее время все чаще импульсная техника вытесняет из повседневного обихода традиционные трансформаторные схемы блоков питания. Выигрыш тут очевиден, во первых это экономия намоточного материала, который стоит не дешево. Во вторых, это габариты и масса приборов,на сегодняшний день при современной миниатюризации аппаратуры различного назначения,этот вопрос очень актуален, большинство схем ИБП довольно сложны в сборке и настройке и не доступны для повторения начинающими радиолюбителями.

    В данной статье приводится схема простого ИБП, при разработке которого ставилась задача простоты конструкции, хорошей повторяемости, использование подручного материала, несложности в сборке и настройке. Несмотря на простоту, ИБП имеет довольно неплохие характеристики.

    ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПРИБОРА

    Питающее напряжение сети: 220В/50Гц.
    Номинальная выходная мощность: 300Вт.
    Максимальная выходная мощность: до 500Вт.
    Частота преобразования напряжения: 30кГц.
    Вторичное выпрямленное напряжение варьируется по необходимости.

    ПРИНЦИПИАЛЬНАЯ СХЕМА ИПБ

    Принцип работы ИБП заключается в следующем: импульсы для управления ключами генерирует задающий генератор, построенный на специальном драйвере TL494, частота импульсов управления 30кГц. Импульсы управления с выходов микросхемы подаются поочередно на транзисторные ключи VT1,VT2 предварительного формирователя импульсов для выходных силовых ключей. Ключи VT1,VT2 нагружены трансформатором управления TR1, который и формирует импульсы управления мощными выходными ключами VT3,VT4 ,формирователь необходим для гальванической развязки затворных цепей выходного каскада. ИБП построен по полумостовой схеме, средняя точка для полумоста создается конденсаторами С3,С4, которые одновременно служат сглаживающим фильтром выпрямленного диодным мостом VDS1 питающего напряжения сети. Цепь R7,C8 обеспечивает кратковременно питание на задающий генератор и формирователь импульсов управления,для первичного запуска ИБП, после полного заряда конденсатора С8 питание формирователя осуществляется непосредственно обмоткой 3 трансформатора TR2 c которой снимается переменное напряжение 12В. Цепочка VD2 ,C6 служит для выпрямления и сглаживания питающего формирователь напряжения. Стабилитрон VD1 ограничивает напряжение первичного запуска до 12В.Вторичное напряжение питания для РЭА снимается с обмотки 3 трансформатора TR2, выпрямляется диодами шотки VD3,VD4 и подается на сглаживающий фильтр С9,С10. Если необходимое напряжение питания превышает 35В, включаются по два диода последовательно.

    Несколько слов о конструкции ИБП. большинство компонентов взяты из неисправного компьютерного БП АТХ. А именно это микросхема TL494, конденсаторы С9,С10, диодный мост VDS1, конденсаторы С1,С2, С5,С6,С7, диод VD2, диоды Шоттки VD3,VD4, и ферритовые сердечники с каркасами TR1,TR2.

    Сам ИБП конструктивно был собран в корпусе того же разобранного БП АТХ. Транзисторы VT3,VT4 установлены на радиаторы площадью 50 см 2 .

    Данные перемотки трансформаторов TR1,TR2:
    TR1, все четыре обмотки содержат по 50 витков провода 0.5 мм
    TR2, Обмотка 1 наматывается проводом 0.8мм 110 витков. Обмотка 3 содержит 12 витков проводом 0.8мм. Обмотка 2 наматывается в зависимости от необходимого вторичного напряжения питания и рассчитывается из соотношения 1 виток на 2 вольта. Так как на выходе стоит удвоитель напряжения.

    Список радиоэлементов

    Мощный импульсный блок питания

    Inikon 21.04.2013 18:35 #

    Это худшая схема из всех что видел. Дедтайм не выставлен как нужно. Смещения даны все не от 5 вольт, а от питания. Драйверный трансформатор зачем то качается очень мощными полевиками, подпертыми на предел микросхемы. Силовые ключи подперты тупо резисторами-грелками. Пускач через конденсатор огромной емкости это вообще что-то. Отсутствие дросселя на выходе в сумме с большой емкостью, рано или поздно на пуске хлопнет. Вместо нормального транса со средней точкой применен обычный удвоитель. Одни минусы в схеме. И кстати пусковое кз ГДТ возможно. И да, эта схема «500 ватт» эти 500 ватт не заслуга автора, это IR постарались, сделали полевики мощные, которые и киловатт дадут и 2 в пике смогут. А здесь даже не позаботились о нормальном драйвере для них. Про отсутствие обратных связей уже говорить то нет смысла, их всеравно единицы способны сделать.
    Я вот например вешал ГДТ сразу на микруху, ставил драйверок на выходе ГДТ на транзисторе кт315 и двух кд522. В результате идеальные фронты на частотах вплоть до 400 килогерц (работал на 90 килогерц), ключи ирф740.
    И всему этому делу хватало питания без самозапитки от гасящего 1.6мкф конденсатора. Один минус был — КЗ гдт-микруха в момент пуска до срабатывания триггера, оно может не дать включиться и привести к отключению по снижению напруги, ток питания через конденсатор не способен насмерть убить микросхему при этом кз. Времени не было и я сдал бп в эксплуатацию, не жаловались еще. Но все-таки я в дальнейших проектах переделал раскачку гдт на мостовую, дополнив выходы тл494 пнп транзисторами.
    Исправлюсь немного. Смещения не от питания, а оказывается их вообще нет! А должны быть на крайняк 2 15 13 14 соединены

    Мощный импульсный блок питания

    Расположение некоторых деталей на печатке не понятно. Можете сделать расположение элементов для лицевой стороны платы? Или хоть на печатке.

    Мощный импульсный блок питания

    Игорь 23.11.2013 12:23 #

    А я собрал этот ИБП изменив пару номиналов. И добавив плавный пуск выходным конденсаторам через резистор с последующим замыканием реле. И очень им доволен. Извлек с него 800 Ватт долговременной нагрузки. Больше было страшно

    Мощный импульсный блок питания

    *****

    Как работает простой и мощный импульсный блок питания

    Предлагаем рассмотреть, что такое импульсный блок питания (ИБП), как он работает, а также как сделать это устройство в домашних условиях.

    Общая информация о ИБП

    ИБП — это устройство, которое выпрямляет сетевое напряжение, а затем формирует из него импульсы частотой более 10 кГц, которые после подаются на специальный импульсный трансформатор.

    ИБП представляет собой электронный преобразователь, который включает в себя импульсный регулятор, для эффективного преобразования электрической энергии и широтно-импульсный модулятор (ШИМ). Как и другие источники питания, ИБП передает мощность от источника электросети к нагрузке, в это время преобразовывая напряжение.

    Мощный импульсный блок питания

    Схема — Импульсный блок питания

    В идеале, импульсный блок питания не рассеивает никакой энергии. В противоположность этому, линейный источник питания регулируя выходное напряжение, непрерывно рассеивает энергию на p-n переходе транзистора. Таким образом высокая эффективность преобразования является важным преимуществом импульсного источника питания перед линейным. Кроме того, любой простой импульсный блок питания гораздо более компактен, чем трансформаторный с линейным стабилизатором, но при этом не уступает по эффективности.

    Мощный импульсный блок питания

    Фото — Сетевой импульсный блок питания

    Импульсные блоки питания используются в качестве замены линейных, так как имеют меньший размер и вес при схожей эффективности.

    Видео: как сделать простой блок питания (импульсный)

    Принцип действия

    Рассмотрим по циклам принцип работы простого импульсного блока питания.

    Если ИБП имеет входное напряжение переменного тока к примеру, в компьютере, ПК, ноутбуке, то первый этап заключается в преобразовании входящего переменного напряжения в постоянный. Блок питания с входом, рассчитанным входное напряжение постоянного тока не требует этой стадии. В некоторых блоках питания, например компьютерных, электрическая схема выпрямителя может быть сконфигурирована, как у удвоителя напряжения путем добавления переключателя управляемого вручную или автоматически. Эта функция позволяет работать источникам питания от сети которая обычно выдает 115 В или 230 В.

    Выпрямитель сглаживает нерегулируемое переменное напряжение в постоянное, которое затем отправляется в накопительный конденсаторный фильтр. Ток, потребляемый от источника питания этой цепи (выпрямителя) трансформируется в короткие импульсы вокруг пиков напряжения переменного тока.

    Данные сигналы имеют значительную энергию высокой частоты, которая уменьшает коэффициент мощности импульсного трансформатора, за счет чего удается уменьшить его габариты. Для коррекции этого явления многие новые ИБП используют специальную PFC схему, чтобы заставить входной ток следовать синусоидальной форме входного напряжения переменного тока и для коррекции коэффициента мощности. Импульсные источники питания, которые используют Active PFC – встречаются в камерах видеонаблюдения, компьютерах, и т. п. поддерживающие входное напряжение от

    100 Вольт переменного тока до 250 В.

    Импульсный обратноходовый блок питания предназначен для входа переменного напряжения, как правило, так же он может работать и от источника постоянного тока, так как постоянное напряжение будет проходить через мостовой или полумостовой выпрямитель без изменений. Если блок питания предназначен для 115 В и не имеет переключателя напряжения, то требуется напряжение 163 В постоянного тока (115 × √2).

    Но этот тип использования может быть вредным для выпрямителя, т.к. он будет использовать половину диодов в выпрямителе для полной нагрузки. Это может привести к перегреву одного из составляющих выпрямителя, из-за чего значительно понижается его долговечность. С другой стороны, если источник питания имеет переключатель режимов входного напряжения 115/230В (компьютерный AT-АТХ блок питания Panasonic, Samsung, dvd-привод Vbulletin), переключатель должен быть установлен в положение 230, и получать требуемое напряжение 325 В постоянного тока (230×√2).

    Диоды в этом типе питания будут отлично выпрямлять переменное напряжение, потому что они, по своим характеристикам повторяют двухполярный удвоитель напряжения. Единственным недостатком такого простого блока является его недолговечность.

    После того как сетевое напряжение стало выпрямленным оно поступает на инвертор.

    Инвертор импульсного блока питания преобразовывает постоянный ток в переменный, запустив его через коммутатор напряжения, чья выходная энергия трансформации очень небольшая, с несколькими десятками витков обмотки трансформатора на частоте десятков или сотен килогерц, он работает как УНЧ. Частота обычно выбирается выше 20 кГц, чтобы сделать её не слышной для человека. Коммутация выполнена в виде многоступенчатого сигнала ШИМ на ключевых MOSFET транзисторах. MOSFET транзисторы представляют собой тип устройств с низким сопротивлением открытого перехода и высокой способностью прохождения больших токов.

    Мощный импульсный блок питания

    Фото — Принцип работы импульсного блока питания

    Если выходы должны быть изолированы от входа, как это обычно бывает в сетевых источниках питания, инвертированный переменный ток используется для питания первичной обмотке высокочастотного трансформатора. Трансформатор уже повышает или понижает напряжение на вторичной обмотке до необходимого уровня. На блок-схеме это видно на выходе трансформатора.

    Мощный импульсный блок питания

    Фото — Принципиальная схема источника питания

    Для выходных напряжений выше десяти вольт используются кремниевые диоды. При более низких напряжениях, обычно используются диоды Шоттки в качестве элементов выпрямителя; они имеют преимущества :

    1. Более быстрое время восстановления, чем у кремниевых диодов (позволяет работать с малыми потерями на высоких частотах);
    2. Низкое падение напряжения при прохождении тока. Для еще более низких выходных напряжений, малогабаритные ИБП используют транзистор в качестве синхронных выпрямителей, в таком случае именно в транзисторе происходят основное выпрямление переменного напряжения..

    Затем производится сглаживание с помощью фильтра, состоящего из дросселя и конденсатора. При более высоких частотах коммутации, необходимы компоненты с более низкой емкостью и индуктивностью.

    Мощный импульсный блок питания

    Фото — Миниатюрный импульсный блок

    Более простой неизолированный импульсный источник питания содержит дроссель вместо трансформатора. К такому типу относятся повышающие и понижающие преобразователи. Они принадлежат к простейшему классу с одним входом и одним выходом, которые используют один дроссель и один активный переключатель.

    Как сделать блок питания своими руками

    Собрать средне-мощный или маломощный импульсный блок питания своими руками для портативного телевизора или планшетного компьютера можно в домашних условиях.

    Пошаговое описание. как сделать миниатюрный универсальный самодельный ИБП, который подойдет для настольной светодиодной лампы, приемника, музыкального плеера:

    1. Выберите зарядное устройство, которое может обеспечить достаточный ток для зарядки аккумулятора. Проверьте преобразователи, предназначенные для работы больших внедорожников, если делаете сложную систему.

    Мощный импульсный блок питания

    Фото — Схема простого ИБП

    Проверьте солнечные источники питания для домов и инверторы для больших систем. Убедитесь, что контакты зарядного устройства способны передать мощность для питания вашей нагрузки.

    1. Выберите батареи глубокого цикла. Не используйте автомобильный аккумулятор. Если вы будете использовать гелевые или необслуживаемые батареи, то система буде работать исправно. Для более крупных систем, состоящих из нескольких батарей глубокого цикла, нужно выбирать только AGM или аккумуляторы с жидким электролитом.

    Убедитесь, что батареи вентилируются для выхода водорода. Если вы покупаете аккумуляторы с жидким электролитом, убедитесь, что устройство поддерживает выравнивание плотности заряда. Свинцово-кислотные батареи продаются номиналом 6 и 12 вольт. Вам нужно будет соединить их последовательно, чтобы поднять напряжение, или параллельно, чтобы увеличить мощность ампер-часов.

    Мощный импульсный блок питания

    Фото — Источник питания с аккумуляторами

    Расчет аккумуляторов для импульсных блоков питания с контроллером заряда и без него:

    12 вольт = 2x6V – необходимо два 6 вольтовых аккумулятора, соединенных последовательно;

    24 вольт = 4x6V или 2x12V батареи в последовательном соединении.

    Не смешивайте разные типы батарей. Новые батареи, добавленные в существующий комплект будет способствовать снижению заряда первичных.

    1. Выберите инвертор. Необходимо купить однотактный или двухтактный повышающий инвертор. Мощность инвертора в ваттах, должна быть в 3-7раз больше, чем у номинального тока нагрузки. Инверторы доступны для входных напряжений от 12, 24, 36, 48 и до 96 вольт. Чем выше напряжение, тем лучше, особенно для больших систем. 12 вольт является наиболее распространенным, но ни в коем случае нельзя рассматривать 12 вольт для системы больше, чем 2400 Вт мощности.
    1. При помощи кабелей соедините инвертор, аккумулятор и прочие приборы.Для соединения деталей необходимо брать не тяжелые провода, чтобы они не тянули контакты.Обязательно проверяйте связь при помощи мультиметра.
    1. Отметив полярность на проводах, надежно прикрепите силовой кабель к батарее аккумуляторов и к контроллеру заряда ,это можно сделать с использованием паяльника. При помощи мультиметра проверьте все соединения проводников.
    1. Подготовьте систему зарядки. Подключите зарядное устройство к сети и включите его.
    1. Теперь нужно провести наладку системы импульсного блока питания, рассмотрим, как проверить инвертор. Прикрепите и подключите прибор, если он расположен отдельно от зарядного устройства. Подключите кабели к батареям, отметив полярность. Включите инвертор, и проверьте показания прибора с разными нагрузками переменного тока.

    Главные признаки неисправности импульсного блока:

    Оставьте инвертор на ночь с нагрузкой, аналогичной планируемой, и батарею заряжаться на всю ночь. Утром, батарея должна быть полностью заряжена.

    1. Теперь нужно создать защитный шкаф. Можно просто переделать готовый кожух от сгоревшей аппаратуры, смонтировать его с наличием светодиодных или галогеновых лампочек, это практически бесплатно и эффективно.

    Мощный импульсный блок питания

    Фото — Источник бесперебойного питания в боксе

    Самодельные импульсные блоки питания проще всего переделывать с уже готовых, на микросхема ШИМ серии IR2151, TL431, UC3842 с автоматическим управлением (регулировкой), их схемотехника идеально подходит для данной работы.

    Главное условие – работать с защитой! Нужно надевать перчатки, очки, защитные маски.

    Конечно, для работы DVD плеера или лампы освещения можно приобрести дешевый китайский прибор. Но для полевых работ лучше купить импульсный блок питания на 12 В (как для ПК) на микросхемах IR2153, TL494. его цена довольна приемлема, а схема работы универсальна. Найти прибор можно в любом электротехническом магазине Вашего города.

    Также обратите внимание на модели на микросхемах таких фирм как: model APC, Logicpower, CyberPower, FSP, Dyno, Eaton, Robiton, PSU, PSS, TOP, Samsung. Регулярно проводите плановый ремонт техники, платы должны проверятся каждые полгода.





    Внимание, только СЕГОДНЯ!
  • Добавить комментарий

    Ваш e-mail не будет опубликован. Обязательные поля помечены *